DLR Institute of Solar Research Overview

Dr. Reiner Buck Head of Department "Solar High Temperature Technologies"

Knowledge for Tomorrow

Research Fields

Solar thermal power plants

- Solar tower
- Parabolic trough
- Solar plant optimisation
- Plant control
- Qualification
- Energy Meteorology

Solar chemical engineering

- Processes for the generation of solar fuels, i.e. hydrogen
- Solar water treatment

Thermal characterisation of building envelopes

- Using radar and infrared
- Measurements from outside
- Measurements from inside

The following slides show a selection of projects and work

Molten Salt at Increased Temperatures

Approach for parabolic trough: replace thermal oil by molten salt

Molten Salt at Increased Temperatures

Approach for parabolic trough: replace thermal oil by molten salt

Advantages:

- Increased HTF temperature (up to 565°C)
- Increased power block efficiency
- Increased storage density
- Reduced pumping losses
- Reduced system complexity
- Reduced investment cost
- \Rightarrow Significant reduction of LCOE

Molten Salt in Parabolic Troughs Évora Molten Salt Platform (EMSP)

Challenges:

- Salt Freezing: filling and draining, losses in nonoperation mode, freezing in normal operation mode
- Performance of the SCA / HCE
- Flexible connections
- Steam generating system

Demonstration in EMSP:

- Develop safe and efficient operation procedures
- Proof of performance and durability of components
- Achieve bankability

- 2.7 MW_{th} Heliotrough[™] collector loop
- 1.6 MW_{th} once-through steam generator
- 2 hours thermal energy storage
- Maximum temperature 565 °C

Particle Systems

Objective: Develop a high-efficiency receiver for high temperatures \Rightarrow Centrifugal particle receiver **CentRec**[®] for 1000°C

- Bauxite particles
 - Cheap (500 1000 €/ton)
 - Stable >1000°C
- Direct absorption receiver
- Particles as heat transfer and storage medium

• Residence time controlled by rotational speed

Cylinder walls isolated by particle layer

Particle Receiver Test

Solar tests in Jülich Solar Tower

Test results:

- About 70 hours of solar operation in 25 test days
- Receiver outlet temperature of 965°C achieved
- Homogeneous temperature over circumference
- Receiver efficiency corresponds to simulation model

Particle System Status

Power production: annual system efficiency > 20% predicted

- Assuming 620°C steam power block with 43% efficiency, further improvement possible
- With future sCO₂ cycles, even higher efficiencies are predicted

Process heat: focus for near-term applications, large variety of applications

Foundation of spin-off company HELIOHEAT in 2017

• Marketing and production of CentRec® receiver technology (under license from DLR)

Lighthouse Project HIFLEX:

- EU project with 9 international partners, 18.4 M€
- complete particle system with 2.5MW_{th} receiver, providing 800kW_{th} for 24/7 using particle storage, produce steam at 620°C

Autonomous Plant Control using Artificial Intelligence

Operation Simulation using Ray-Tracing & Aim-Point Strategies

Heliostat field and receiver control shall achieve:

- Maximum solar yield
- Salt outlet temperature = 560°C
- Heat flux < 1200 kW/m²
- Salt film temperature < 600°C

12:16:40

\٨/

N

Autonomous Plant Control using Artificial Intelligence

Demonstration in Jülich planned

Thermo-Chemical Cycles for Solar Fuels

Solar Hydrogen Production from Water – Theoretical Efficiencies

	Process				Temperature			Solar interface			
			1100633			of the chemical reaction		ree	receiver temperature		
		Alkaline Electrolysis				25°C			Solar PV		
	High temperature steam electrolysis				850°C		F	Future solar tower 1200°C			
		Thermochemical cycle with ceria				1500 / 1150°C			Future solar dish 1500°C		
Annual Efficiency											
								25%	,)		
	,					18%				 I hermo High to 	Che
					14%						Alkaline El
	+ 0%	5	 % 10) 0%	15%	2	0%	25%	30	%	

Thermochemical cycle with ceria
High temperature steam electrolysis
Alkaline Electrolysis

*G.J. Kolb, R.B. Diver SAND 2008-1900 / N. Siegel et al. I&EC Research May 2013

Development of New Reactors with Higher Efficiency

Modelling Solar Vacuum Particle-Reactors

- Calibration of Discrete Element Modelling (DEM) input parameters for bauxite and ceria particles
- Heat transfer models for DEM
 - Chemical reaction
 - Inter-particle model
 - Radiation with Monte Carlo Ray Tracing
- Use for the design of advanced reactors Time: 0.00 s

DLR.de · Chart 14

QFly: Airborne Condition Monitoring and Optimisation of Plants

QFly: Airborne Condition Monitoring and Optimisation of Plants

Scope: Reduce the cost for condition monitoring and provide data to optimise plant performance

- Measurement of optical performance of collectors (slope deviation of reflectors)
- 4 hours for 50 MW field
- Height <250m

Results:

- Localisation of misalignments and surface errors
- Commercially available by licence to CSP Services

Slope Deviation SDx, eff for the whole collector (SCA) in mrad

Condition Monitoring by Nowcasting of DNI

Condition Monitoring by Nowcasting of DNI

Objective: Improved plant control

- During cloud transition improved control of outlet temperature desired
- Automised and optimised control strategy increases revenues using spatial DNI information
 - First analysis shows increased revenues of 2% (approx. 200 t€/yr) for a 50 MWe plant (La Africana)

Outlook:

- Increased revenues also expected at CSP towers \rightarrow first works started
- Additional potential with longer prediction horizon (→ combination of satellite & model predictions)

New R&D Efforts

Third Life of Coal Power Plants

- Replace combustion system with thermal storage heated by renewable energy
- System studies
- Demonstration in real power plant planned

Malta (Carnot Battery)

- Gas-based cycle with thermal storage, used as power cycle and heat pump
- Round-trip efficiencies up to 70%
- Demonstration system planned in Jülich

Large Scale Facilities in Cologne and Jülich

QUARZ[®]-Laboratory

for standardised testing of industrial of industrial CSP system components DLR-Cologne

DLR

Plataforma Solar de Almería

owned and operated by CIEMAT

Thank you for your attention!

