

## METU-GÜNAM's CST Research Activities and Capacities

Prof. Dr. Ilker TARI itari@metu.edu.tr

### **Facilities**

- High flux concentrating solar simulator
  - Operators: Ilker Tari, Sinan Uygur and Onur Polat
  - Open for Transnational Access thru SFERA-III
- Gravity driven particle flow receiver set-up, Evan Johnson
- PTC Simulator and olive mill wastewater spray dryer
  - Operators: Deniz Degirmenci and Ertugrul Cubuk
- Hot disk thermal characterization, Zeynep Uykun
- Workstations for ray-tracing, ANSYS, OpenFoam and TRNSYS simulations

**High Flux Solar Simulator and Gravity Driven** 

Particle Receiver Set-up

Pre-heating hopper, 700 °C

Test section, receiving concentrated light

Scale for mass flow rate

Three 6 kW bulbs, with concentrating dishes



## Parabolic Through Collector Simulator and Solar Spray Dryer Set-up



# Particle Fluidized Bed TES Experimental Setup









### **Experimental and Simulation Work**

- Gravity driven particle flow receiver simulations, Evan Johnson
- Particle TES experiments and simulations, Esra Polat
- Mechanical and thermal characterization of particles, Zeynep Uykun
- PTC Simulator and olive mill wastewater spray dryer
  - Experiments and simulations by Deniz Degirmenci and Ertugrul Cubuk and previously by Selin Erdogan
- PTC ray-tracing and ANSYS Fluent simulations, Sinan Uygur
- Solar hybridization of high temperature industrial processes, Simulation works by
  - Basil Abu Zanouneh for Seydisehir Aluminum Plant
  - Onur Polat and Shadi Salehian for Gaziantep Cement Plant

### Modeling of Solar Receivers and Heat Exchangers

- > Solar receivers:
  - Collaboration with DLR on centrifugal solar receiver
- > Particle-fluid heat exchangers:
  - Moving bed heat exchangers with tubes
  - Flat plate heat exchangers

Internal flow Granular flow Moving bed heat Centrifugal Receiver, exchanger, DLR receiver, NREL receiver, METU DI R Particle inlet x-spacing = 4.44cm sand (hot) Feed hopper Particle outlet Particle flo sand (cold)

Flat plate heat exchanger, Solex Thermal



#### **Parabolic Through Collector Simulator**



#### **Experimental Results from 4 different dryer surfaces**









### Results from 9 different spray nozzles





### Mechanical and Thermal Characterization of Sand and Sintered Bauxite Particles

#### 1.Direct Measurement Approach

Particle-Wall Friction Coefficients





**Inclined Plane Test** 

#### **3. High Tempreture Test and Thermally Cycled Particles**

#### 4. Thermal Characterization using HotDisk



#### 2. Calibration Approach

Particle-Particle Friction Coefficients





Discharge Time and Angle of Repose Test



# PTC simulations using Tonatiuh, MATLAB and ANSYS Fluent



```
f(x,y) = p00 + p10*x +
p01*y + p20*x^2 +
p11*x*y + p02*y^2 +
p21*x^2*y +
p12*x*y^2 + p03*y^3 +
p22*x^2*y^2 +
p13*x*y^3 + p04*y^4
```





### **Matlab Simulink Model of Cement Plant**



## Solar Hybridization of Cement Plant

